On a Counterexample in Monotone Approximation

Xiang Wu
Department of Mathematics, Hangzhou University, Hangzhou, Zhejïang, Peopie's Republic of China

AND

Song Ping Zhou

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia. Canada B3H $3 J 5$

Communicated by Paui Nevai
Received August 1, 1990; revised May 8, 1991

Using some new ideas and careful calculation, the present paper shows that there exists a function $f \in C_{[-1,1]}^{k} \cap \Delta^{k}$ such that $\lim \sup _{n \rightarrow \infty} E_{n}^{(k)}(f) / \omega_{k+3}\left(f, n^{-1}\right)=+\infty$, which improves the result from Wu and Zhou (in "Progress in Approximation Theory" (P. Nevai and A. Pinkus, Eds.), pp. 857-866, Academic Press, New York, 1991). © 1992 Academic Press, Inc.

1. Introduction

Denote by $C_{[-1,1]}^{N}$ the class of functions which have N continuous derivatives on the interval $[-1,1]$, and by Π_{n} the class of algebraic polynomials of degree at most n,

$$
\Delta^{k}=\left\{f: \Delta_{h}^{k} f(x) \geqslant 0, x \in[-1,1], x+k h \in[-1,1]\right\},
$$

where

$$
\Delta_{h}^{k} f(x)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f(x+j h) .
$$

Let

$$
\begin{aligned}
\|f\| & =\max _{-1 \leqslant x \leqslant 1}|f(x)| \quad \text { for } \quad f \in C_{[-\ldots, 1]}, \\
E_{n}^{(k)}(f) & =\min \left\{\|f-p\|: p \in \Pi_{n} \cap \Delta^{k}\right\}
\end{aligned}
$$

for $f \in C_{[-1,1]} \cap \Delta^{k}$,

$$
\omega_{m}(f, \delta)=\sup \left\{\left|\Delta_{h}^{m} f(x)\right|: x \in[-1,1], x+h \in[-1,1], 0<h \leqslant \delta\right\} .
$$

Recently, much research has been devoted to the study of monotone and comonotone approximation of functions by algebraic polynomials, especially to Jackson type estimates (cf., for example, $[1-4,6-8,10-14,17]$). However, from the converse results of Lorentz and Zeller [9] and Shvedov [15], it appears that Jackson type estimates for higher degree moduli of smoothness do not hold true in monotone approximation. So in [16] we guessed that there exists a function $f \in C_{[-1,1]} \cap \Delta^{k}$ such that for $k \geqslant 1$,

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{(k)}(f)}{\omega_{k+2}\left(f, n^{-1}\right)}=+\infty .
$$

In [16], we showed a weaker result, which claims that there exists a function $f \in C_{[-1.1]}^{k} \cap \Delta^{k}$ such that

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{(k)}(f)}{\omega_{2 k+1}\left(f, n^{-1}\right)}=+\infty
$$

for $k \geqslant 2$ or

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{(1)}(f)}{\omega_{4}\left(f, n^{-1}\right)}=+\infty
$$

for $k=1$.
Using a new constructive method and careful calculation, the present paper improves the above result.

Theorem. Let $k \geqslant 1$. Then there exists a function $f \in C_{[-1,1]}^{k} \cap \Delta^{k}$ such that

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{(k)}(f)}{\omega_{k+3}\left(f, n^{-1}\right)}=+\infty
$$

2. Proof of the Theorem

Lemma 1. Suppose that $a>0, \alpha(x)=a^{2} /\left(x^{2}-a^{2}\right), g_{m}(x, a)=x^{m} e^{\alpha(x)+1}$, and $x \in(-a, a)$, then ${ }^{1}$

$$
\left|g_{m}^{(m)}(x, a)-m!\right| \leqslant C(m) a^{-2} x^{2}, \quad|x|<a
$$

[^0]Proof. Lemma 1 is evidently true for $a / 2 \leqslant|x|<a$. Now suppose $|x|<a / 2$. Write

$$
\begin{align*}
g_{m}^{(m)}(x, a)= & m!e^{\alpha(x)+1}+e \sum_{j=1}^{m}(m-j)!\binom{m}{j} x^{j} \frac{d^{j}}{d x^{j}} e^{x(x)} \\
= & m!\left(1+\frac{x^{2}}{x^{2}-a^{2}}+O\left(\left(\frac{x^{2}}{x^{2}-a^{2}}\right)^{2}\right)\right) \\
& +e \sum_{j=1}^{m}(m-j)!\binom{m}{j} x^{j} \frac{d^{j}}{d x^{j}} e^{\alpha(x)} \tag{1}
\end{align*}
$$

It is easily verified that

$$
\begin{equation*}
\left|\frac{d}{d x} e^{\alpha(x)}\right| \leqslant C|x| a^{-2} \tag{2}
\end{equation*}
$$

By substituting $y=x / a$,

$$
\begin{equation*}
\left|\frac{d^{j}}{d x^{j}} e^{x(x)}\right|=a^{-j}\left|\frac{d^{j}}{d y^{j}} \exp \left(\frac{1}{y^{2}-1}\right)\right| \leqslant C(m) a^{-j}, \quad 2 \leqslant j \leqslant m \tag{3}
\end{equation*}
$$

Lemma 1 is therefore completed by combining (1)-(3) together.

Lemma 2. Suppose that $\varepsilon_{n} \geqslant 0, \varepsilon_{n} \rightarrow 0, n \rightarrow \infty, \sigma>0$. Define

$$
\bar{g}_{k}\left(x, \varepsilon_{n}, \sigma\right)=\varepsilon_{n}^{2+2 \sigma} g_{k}\left(x, \varepsilon_{n}\right)+x^{k+2}-\varepsilon_{n}^{2+2 \sigma} x^{k}, \quad x \in\left(-\varepsilon_{n}, \varepsilon_{n}\right)
$$

then for sufficiently large n and $x \in\left(-\varepsilon_{n}, \varepsilon_{n}\right)$.

$$
\bar{g}_{k}^{(k)}\left(x, \varepsilon_{n}, \sigma\right) \geqslant 0
$$

Proof. By Lemma 1, through the calculation

$$
\begin{aligned}
\bar{g}_{k}^{(k)}\left(x, \varepsilon_{n}, \sigma\right) & =\varepsilon_{n}^{2+2 \sigma} g_{k}^{(k)}\left(x, \varepsilon_{n}\right)-k!\varepsilon_{n}^{2+2 \sigma}+\frac{(\underline{k}+2)!}{2} x^{2} \\
& \geqslant \frac{(k+2)!}{2} x^{2}-O\left(x^{2} \varepsilon_{n}^{2 \sigma}\right)
\end{aligned}
$$

then for sufficiently large n and $|x|<\varepsilon_{n}$,

$$
\bar{g}_{k}^{(k)}\left(x, \varepsilon_{n}, \sigma\right) \geqslant 0
$$

Lemma 3. Let

$$
\begin{aligned}
& F_{l}(x)=\sum_{j=1}^{l} n_{j}^{-1 / 4} f_{n_{j}}(x) \\
& Q_{l}(x)=q_{l}(x)+n_{l}^{-1 / 4}\left(x^{k+2}-n_{l}^{-5 / 2} x^{k}\right)
\end{aligned}
$$

where

$$
f_{n}(x)= \begin{cases}x^{k+2}-n^{-5 / 2} x^{k}, & |x| \geqslant n^{-9 / 8} \\ \bar{g}_{k}\left(x, n^{-9 / 8}, 1 / 9\right), & |x|<n^{-9 / 8}\end{cases}
$$

$q_{l}(x)$ is the algebraic polynomial of best approximation of degree n_{l} to $F_{l-1}(x)$, and $\left\{n_{l}\right\}$ is a subsequence of natural numbers chosen by induction: Set n_{1} to be some natural number N,

$$
\begin{equation*}
n_{l} \geqslant\left\|F_{l-1}^{(2 k+8)}\right\| . \tag{4}
\end{equation*}
$$

Then the estimates

$$
\begin{gather*}
\left\|F_{l}-Q_{l}\right\| \sim n_{l}^{-1 / 4}\left\|f_{n_{l}}-x^{k+2}+n_{l}^{-5 / 2} x^{k}\right\| \sim n_{l}^{-9 k / 8-11 / 4} \tag{5}\\
Q_{l}^{(k)}(0) \leqslant-C(k) n_{l}^{-11 / 4} \tag{6}
\end{gather*}
$$

hold.

Proof. It is not difficult to see that

$$
\begin{equation*}
\left\|F_{l-1}-q_{l}\right\|=O\left(\left\|F_{l-1}^{(2 k+8)}\right\| n_{l}^{-2 k-8}\right) \tag{7}
\end{equation*}
$$

by Lemma 1 and a theorem on simultaneous approximation to continuous functions and their derivatives from Leviatan [5],

$$
\begin{equation*}
\left|q_{l}^{(k)}(0)\right|=\left|F_{l-1}^{(k)}(0)-q_{l}^{(k)}(0)\right|=O\left(\left\|F_{l-1}^{(2 k+8)}\right\| n_{l}^{-k-8}\right) . \tag{8}
\end{equation*}
$$

From the expression

$$
F_{l}(x)-Q_{l}(x)=F_{l-1}(x)-q_{l}(x)+n_{l}^{-1 / 4}\left(f_{n_{l}}(x)-x^{k+2}+n_{l}^{-5 / 2} x^{k}\right)
$$

noting that

$$
\begin{aligned}
\left\|f_{n_{l}}(x)-x^{k+2}+n_{l}^{-5 / 2} x^{k}\right\| & =\max _{-n_{l}^{-9 / 8<x<n_{l}^{-9 / 8}}}\left|e n_{l}^{-5 / 2} x^{k} \exp \left(\frac{n_{l}^{-9 / 4}}{x^{2}-n_{l}^{-9 / 4}}\right)\right| \\
& \sim n_{l}^{-9 k / 8-5 / 2}
\end{aligned}
$$

and (4), (7), we get (5). To prove (6), we see

$$
Q_{l}^{(k)}(0)=q_{l}^{(k)}(0)-k!n_{l}^{-11 / 4}
$$

thus we only need apply (4) and (8).
Lemma 4. Under the conditions of Lemma 3, for any $r(x) \in \Pi_{n} \cap \Delta^{k}$ and large enough l we have

$$
\begin{equation*}
\left\|F_{l}-r\right\| \geqslant C(k) n_{l}^{-k-114} \tag{9}
\end{equation*}
$$

Proof. (5) and (6) imply that

$$
\begin{equation*}
n_{l}^{-9 k ; 8}\left\|F_{l}-Q!\right\| \leqslant C(k)\left|Q_{l}^{(k)}(0)\right| \leqslant C(k)\left|Q_{l}^{(k)}(0)-r^{(k)}(0)\right| \tag{10}
\end{equation*}
$$

by the Bernstein type inequality

$$
\begin{align*}
\left|Q_{l}^{(k)}(0)-r^{(k)}(0)\right| & \leqslant C(k) n_{l}^{k}\left\|Q_{l}-r\right\| \\
& \leqslant C(k) n_{l}^{k}\left(\left\|Q_{l}-F_{l}\right\|+\left\|F_{l}-r\right\|\right) \tag{11}
\end{align*}
$$

Combining (5), (10), and (11), for l large enough, we get (9).
Proof of the Theorem. From Lemma 2, we see that there is an $N>0$ such that for $n \geqslant N$,

$$
f_{n}^{(k)}(x) \geqslant 0
$$

Now select $\left\{n_{l}\right\}$ by induction. Set $n_{1}=N$,

$$
n_{l+1}=2\left(n_{l}^{4(k+3)}+\left[\left\|F_{l}^{(2 k+8)}\right\|\right]+\left[\left\|F_{l}^{(k+3)}\right\|^{5}\right]+1\right)
$$

for $l=1,2, \ldots$, where $[x]$ is the greatest integer not exceeding x. Define

$$
f(x)=\sum_{j=1}^{\infty} n_{j}^{-1 ; 4} f_{n_{j}}(x) .
$$

It is clear that $f \in C_{[-1.1]}^{k} \cap \Delta^{k}$. For any $r \in \Pi_{n_{l}} \cap \Delta^{k}$,

$$
\|f(x)-r(x)\| \geqslant\left\|F_{l}-r\right\|-\left\|\sum_{j=l+1}^{\infty} n_{j}^{-1,4} f_{n}\right\|
$$

Applying Lemma 4 we have

$$
\|f(x)-r(x)\| \geqslant C(k)\left(n_{l}^{-k-11 / 4}-n_{l+1}^{-1 / 4}\right) \geqslant C(k)\left(n_{l}^{-k-11 / 4}-n_{l}^{-k-3}\right)
$$

thus

$$
\begin{equation*}
E_{n_{l}}^{(k)}(f) \geqslant C(k) n_{l}^{-k-11: 4} . \tag{12}
\end{equation*}
$$

At the same time, in view of Lemma 3,

$$
\begin{align*}
\omega_{k+3}\left(f, n_{l}^{-1}\right) \leqslant & \left\|F_{l-1}^{(k+3)}\right\| n_{l}^{-k-3}+\omega_{k+3}\left(f_{n_{l}}(x)-x^{k+2}+n_{l}^{-5 / 2} x^{k}, n_{l}^{-1}\right) \\
& +O\left(\sum_{j=l+1}^{\infty} n_{j}^{-1 / 4}\right) \\
= & O\left(n_{l}^{-k-14 / 5}\right)+O\left(n_{l}^{-9 k / 8-11 / 4}\right)+O\left(n_{l}^{-k-3}\right) \tag{13}
\end{align*}
$$

Take $s=\frac{1}{20}$; then from (12) and (13) for sufficiently large l it follows that

$$
\frac{E_{n_{l}}^{(k)}(f)}{\omega_{k+3}\left(f, n_{l}^{-1}\right)} \geqslant C(k) n_{l}^{s} .
$$

The proof of the theorem is completed.

3. Remarks

Remark 1. As we indicated in the introduction, the theorem still leaves a gap open, that is, whether or not the same result for ω_{k+3} is valid for ω_{k+2}. However, by using $n^{-5 / 4} g_{k}\left(x, n^{-9 / 8}\right)+x^{k+1}-n^{-5 / 4} x^{k}$ to replace $\bar{g}_{n}\left(x, n^{-9 / 8}, \frac{1}{9}\right)$ in Lemma 2 and in the sequel, with almost the same proof, we can establish an alternative in the comonotone case:

Let $k \geqslant 1$. Then there exists a function $f \in C_{[-1,1]}^{k}$, which satisfies that $f^{(k)}(x) \geqslant 0$ for $x \in[0,1]$ and $f^{(k)}(x) \leqslant 0$ for $x \in[-1,0]$, such that

$$
\limsup _{n \rightarrow \infty} \frac{e_{n}^{(k)}(f)}{\omega_{k+2}\left(f, n^{-1}\right)}=+\infty
$$

where $e_{n}^{(k)}(f)$ is the best approximation of degree n to f by polynomials which are comonotone with it, that is, polynomials p such that $p^{(k)}(x) f^{(k)}(x) \geqslant 0$ for all $x \in[-1,1]$.

Remark 2. By using a Nikol'skii type inequality instead of a Bernstein type inequality, with carefully chosen ε_{n} and σ, in a similar way to the proof of the theorem, we can prove the corresponding results in L^{p} space for $1 \leqslant p<\infty$:

Let $k \geqslant 1,1 \leqslant p<\infty$. Then there exists a function $f \in C_{[-1,1]}^{k} \cap \Delta^{k}$ such that

$$
\limsup _{n \rightarrow \infty} \frac{E_{n}^{(k)}(f)_{p}}{\omega_{k+3+[1, p]}\left(f, n^{-1}\right)_{p}}=+\infty
$$

where $E_{n}^{(k)}(f)_{p}, \omega_{m}(f, t)_{p}$ are the corresponding best monotone approximation of degree n and modulus of smoothness in L^{p} space.

Acknowledgment

The authors are grateful to the referees for their many valuable comments and suggestions toward the final version of this paper.

References

1. R. K. Beatson, The degree of monotone approximation, Pacific J. Math. 74 (1978), 5-14.
2. R. A. DeVore, Degree of approximation, in "Approximation Theory II," pp. 117-162, Academic Press, New York, 1976.
3. R. A. DeVore, Monotone approximation by polynomizls, SIAM J. Math. Anal. 8 (1977), 906-921.
4. R. A. DeVore and X. M. Yu, Pointwise estimates for monotone polynomial approximation, Constr. Approx. 1 (1985), 323-331.
5. D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1982), 167-176.
6. D. Leviatan, Monotone and comonotone polynomial approximation revisited, J. Approx. Theory 53 (1988), 1-16.
7. G. G. Lorentz, Monotone approximation, in "Inequalities III," pp. 201-215, Academic Press, New York/London, 1972.
8. G. G. Lorentz and K. Zeller, Degree of approximation by monotone polynomials, I, J. Approx. Theory 1 (1968), 501-504.
9. G. G. Lorentz and K. Zeller, Degree of approximation by monotone polynomials. II. J. Approx. Theory 2 (1969), 265-269.
10. E. Passow and L. Raymon, Monotone and comonotone approximation. Proc. Amer. Math. Soc. 42 (1974), 390-394.
11. E. Passow, L. Raymon, and J. A. Roulier, Comonotone polynomial approximation, J. Approx. Theory 11 (1974), 221-224.
12. J. A. Rouler, Monotone approximation of certain classes of functions, J. Approx. Theory 1 (1969), 319-324.
13. O. Shisha. Monotone approximation, Pacific J. Math. 15 (1965), 667-671.
14. A. S. Shyedov, Jackson's theorem in $L^{p}, 0<p<1$, for algebraic polynomials, and orders of comonotone approximation, Mat. Zametki 25, No. 1 (1979), 107-117.
15. A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials. Mat. Zametki 27, No. 1 (1981), 117-130.
16. X. Wu and S. P. Zhou, A problem on coapproximation of functions by algebraic polynomials, in "Progress in Approximation Theory" (P. Nevai and A. Pinkus, Eds.). pp. 857-866, Academic Press, New York, 1991.
17. X. M. Yu, Pointwise estimates for convex polynomial approximation, Approx. Theory Appl. 1, No. 4 (1985), 65-74.

[^0]: ${ }^{1}$ In the paper, $C(x)$ always indicates a positive constant depending upon x only, which may have different values in different places.

