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Using some new ideas and careful calculation, the present paper shows that there
exists a functionfE q -1,1] n A k such that lim SUPn ~x E~kl(f)lwk+3(f,n- 1

) = + 00,

which improves the result from Wu and Zhou (in "Progress in Approximation
Theory" (P. Nevai and A. Pinkus, Eds.), pp.857-866, Academic Press, New York,
1991 ). ~, 1992 Academic Press, Inc.

1. INTRODUCTION

Denote by Cf-l.l] the class of functions which have N continuous
derivatives on the interval [-1, 1J, and by Jl" the class of algebraic
polynomials of degree at most n,

ilk = {J: AZI(x)?: 0, x E [ -1, 1J, x + kh E [ -1, 1J},

where

AZI(x)= i (-l)k-j(~)I(X+jh).
j=O }

Let

IIIII = max II(x)1
-l~x:::;l

for lEe[-:, 1]'

E~k)(f)= min{ 111-pll :pE Iln n Ak }
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for fE C [-1,1] n LI\
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wmCf, b) = sup{ ILlZ' f(x)1 : x E [ -1, 1], x + h E [ -1, 1],0 < h ~ b}.

Recently, much research has been devoted to the study of monotone and
comonotone approximation of functions by algebraic polynomials, espe
cially to Jackson type estimates (cf., for example, [1-4,6-8, 10-14, 17]).
However, from the converse results of Lorentz and Zeller [9] and Shvedov
[IS], it appears that Jackson type estimates for higher degree moduli of
smoothness do not hold true in monotone approximation. So in [16] we
guessed that there exists a function fEe [_ 1, 1] n LI k such that for k ?;; 1,

In [16], we showed a weaker result, which claims that there exists a
function f E C~ -1. 1] n Ll k such that

. E(k)(f)
hm sup n 1 +00
n~ 00 W2k+ I(f, n- )

for k?;; 2 or

I' E~')(f)
.lm sup (f, -I) = + co

n---+OC, W 4 ,n

for k = 1.
Using a new constructive method and careful calculation, the present

paper improves the above result.

THEOREM. Let k?;; 1. Then there exists a function f E C~ -1,1] n LI k such
that

2. PROOF OF THE THEOREM

LEMMA 1. Suppose that a>O, Q((x)= a2/(x 2 _a2
), gm(x, a)=xme~(x)+\

and x E (-a, a), then 1

Ixl <a.

lIn the paper, C(x) always indicates a positive constant depending upon x only, which may
have different values in different places.
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Proof Lemma 1 is evidently true for 0/2 ~ Ixl < a. Now suppose
Ixl < a/2. Write

m (m) .dJ
.+e L (m-j)! . xJ-Je'lXJ.

i~1 } dx

It is easily verified that

By substituting y = x/a,

l ~e'(X)1 = a-J I d
J

. exp (_0_1_) I~ C(m)a-J ,

dxJ dyJ y- - 1 ,

(2)

(3)

Lemma 1 is therefore completed by combining (1 )-(3) together. I

LEMMA 2. Suppose that c" ~ 0, c" -> 0, n -> Xi, (J > O. Define

then for sufficiently large n and x E ( - c", c,,),

Proof By Lemma 1, through the calculation

(k+2)! 0 2 2>- x--O(xc")-- 2' . n'

then for sufficiently large nand Ixl < c",
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LEMMA 3. Let

where
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/

F/ (X) = L nj- 1/4 fn/ X),
j~1

Q/(X) = q/(X) + n/- 1/4(xk+ 2 - n/- 5/2x k),

Ixl ~n-9/8,
Ixl < n -9/8,

q/(.x:) is the algebraic polynomial of best approximation of degree n/ to
F/_ 1(x), and {n/} is a subsequence of natural numbers chosen by induction:
Set n1 to be some natural number N,

Then the estimates

(4 )

IIF/-Q/II ~n/-l/41Ifnl-xk+2+n/-5/2xkll ~n/-9k/8-11/4, (5)

Qikl(O) ~ - C(k)ni ll
/
4 (6)

hold.

Proof It is not difficult to see that

IIF/-l -q/II = O(IIFet 8 )11 n/- 2k
--

8
), (7)

by Lemma 1 and a theorem on simultaneous approximation to continuous
functions and their derivatives from Leviatan [5],

From the expression

noting that

~ n /-9k/8 - 5/2
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and (4), (7), we get (5). To prove (6), we see

Q}k)(O) = q}kl(O) _ k!n,Il'4,

thus we only need apply (4) and (8). I
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(9)

LEMMA 4. Under the conditions of Lemma 3, for any r(x) E II,,! (', L1 k and
large enough I we have

11F/- I'll ~ C(k)n/- k- 114.

Proof (5) and (6) imply that

n,9k,8 IIF/- Q/II ~ C(k) IQ}k)(O)1 ~ C(k) IQ}k)(O) - r(k)(O)I, (10)

by the Bernstein type inequality

IQ}k)(O) - r(k)(O)1 ~ C(k)n7 IIQ,- rll

~C(k)n7(IIQ/-F/11 + llF,-rll). (11)

Combining (5), (10), and (11), for I large enough, we get (9). I
Proof of the Theorem. From Lemma 2, we see that there is an N> 0

such that for n~ N,

fl,k)(X)~O.

Now select {n/} by induction. Set n1 = JIl,

n/+ 1 = 2(nj(k +3) + [IIF}2k+ 8)11] + [11F}k+ 3)11 5 ] + 1)

for 1= 1, 2, ..., where [x] is the greatest integer not exceeding x. Define

00

f(x) = L nj-
11'Ynj(x).

j= 1

Ilf(x)-r(x)11 ~ IIF/-rll-!I. I nj-t,'lnl
I j =/+ 1 I,

Applying Lemma 4 we have

II/(x) - r(x)11 ~ C(k)(n,k -11/4 - n/-+1(4) ~ C(k)(n/-k- 11 /4_ n/- k- 3),

thus

E(k)(/) >- C(k)n -k -11/4
1l{ ~ ,I • (12)
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At the same time, in view of Lemma 3,

(f, -I) ~ IIF(k+3)11 ~k-3 + (f, () k+2 -5/2 k -I)Wk+3 ,nl '" I-I n, Wk+3 "/ X -x +n, x ,n,

+ 0 ( I. nj-
I
/
4

)

j='+ I

= O(n ,-k -14/5) + O(n ,-9k/8-11/4) + O(n i k- 3). (13)

Take s= -irs; then from (12) and (13) for sufficiently large I it follows that

E~~\f) >- C(k) S
I ~ n,.

Wk+3Cf, n,- )

The proof of the theorem is completed. I

3. REMARKS

Remark 1. As we indicated in the introduction, the theorem still leaves
a gap open, that is, whether or not the same result for W k + 3 is valid for
Wk+2' However, by using n-5/4gk(x,n-9/8)+xk+l_n-5/4xk to replace
g,,(x, n- 9

/
8

, !) in Lemma 2 and in the sequel, with almost the same proof,
we can establish an alternative in the comonotone case:

Let k ~ 1. Then there exists a funcr;on f E C~ -1,1 J' which satisfies that
j<k)(X) ~°for XE [0, IJ and f(k)(x) ~°for XE [ -1, OJ, such that

. e(k)(f)
hm sup n 1 + (J),

n~ 00 W k + 2 (f, n - )

where e~)(f) is the best approximation ofdegree n to f by polynomials which
are comonotone with it, that is, polynomials p such that p(k)(X) f(k)(x) ~°for
all XE [-1,1].

Remark 2. By using a Nikol'skii type inequality instead of a Bernstein
type inequality, with carefully chosen 8" and a, in a similar way to the
proof of the theorem, we can prove the corresponding results in LP space
for 1~p < 00:

Let k~l, l~p<oo. Then there exists afunctionfEC~_I,I]("1L1ksuch
that

where E~k)(f)p, wm(f, t)p are the corresponding best monotone approxima
tion of degree n and modulus of smoothness in LP space.
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